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Abstract. Rapid adaptive Optimization Model for Atmospheric Chemistry (ROMAC) is a flexible and computationally 

efficient photochemical box model. The unique adaptive dynamic optimization module in ROMAC enables it to dynamically 

and rapidly estimate the impact of chemical and physical processes on pollutant concentration. ROMAC overcomes the 

shortcomings of over-simplified physical modules in traditional box models, and its ability to quantify the effects of chemical 15 

and physical processes on pollutant concentrations has been confirmed by the chamber and field observation cases. Since a 

variable step and variable order numerical solver without Jacobian matrix processing was developed, the computational 

efficiency of ROMAC is significantly improved. Compared with other box models, the computational efficiency of ROMAC 

is improved by 96%. 
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1 Introduction 

Numerical models are effective tools of atmospheric chemistry studies. The 0-dimensional box model has been widely used 25 

in previous studies to study the relationship between secondary pollutants and precursors (Decker et al., 2021; Decker et al., 

2019; Ling et al., 2017; Wang et al., 2017; He et al., 2019). Box model can be used as a ground Lagrangian trajectories model 

to study the influence of regional transport of precursors on the formation of secondary pollutants (Cheng et al., 2010; Wang 

et al., 2019). In addition, the box model is also a powerful tool in environmental chamber studies (Chen et al., 2015; Novelli 

et al., 2018). 30 
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Since the processes of vertical and horizontal transmission are ignored, the simulation speed of the 0-D box model is higher 

than that of the 3D air quality model. This allows box models to use more comprehensive chemical mechanisms, and focusing 

on the analysis of chemical processes. However, with the development of atmospheric chemistry mechanism, the number of 

chemical reactions involved gradually increases, and the simulation of 0-D box model is still a time-consuming process when 

using chemical mechanisms with a large number of reactions. Chemical transformations can be described by a series of 35 

ordinary differential equations (ODEs), and solving the numerical solution of the ODEs is one of the time-consuming tasks of 

the box model. For example, the Master Chemical Mechanism (MCM v3.3.1) contains about 5900 species (Jenkin et al., 2015), 

and the size of the Jacobian matrix is close to 5900×5900, which requires a large number of matrix calculations in the process 

of solving with the implicit solver. Therefore, it is necessary to develop a computationally efficient model for chemical 

mechanisms. 40 

Several box models have been developed and applied in previous studies, such as AtChem (Sommariva et al., 2020), 

Chemistry As A Box Model Application (CAABA) (Sander et al., 2011), Framework for 0-D Atmospheric Modeling (F0AM) 

(Wolfe et al., 2016) , PyCHAM (O'meara et al., 2021), JlBox (Huang and Topping, 2021) and PBM-MCM (Wang et al., 2018). 

Most of these models rely on third-party tools for differential equation solving. For example, AtChem uses the CVODE library 

to integrate the ODEs of chemical mechanism. F0AM uses ode15s in MATLAB, a variable order and variable time step solver 45 

based on Gear's method. FACSIMILE was used to integrate the ODEs in the PBM-MCM model. Several multistep or 

multistage approaches are commonly used by these chemical solvers, such as ROSENBROCK, BDF, LSODE, GEAR, 

SMVGEAR, etc. (Verwer et al., 1996; Aro, 1996b; Sandu et al., 1997a; Sandu et al., 1997b). Although these solving tools 

have good accuracy and stability, the solving process requires a lot of computing resources, which significantly reduces the 

computational efficiency. 50 

Previous studies have developed several approaches to improve the efficiency of simulation. One way to improve the 

computational efficiency is to simplify the chemical mechanism, such as SAPRC07 (Carter, 2012) and CB6 (Yarwood, 2010), 

which are commonly used in 3D air quality models. The MCM mechanism also has a simplified version (http://cri.york.ac.uk/), 

which can improve the computational efficiency. However, the simplified mechanism will lead to bias in the simulation results 

of radicals (e.g., OH, HO2, RO2) and secondary pollutant concentration(Ying and Li, 2011; Jimenez, 2003). Another approach 55 

is to improve the computational efficiency of differential equation solver, such as using GPU acceleration(Alvanos and 

Christoudias, 2017) or using quasi-Newton method (Esentürk et al., 2018). These methods can effectively shorten the running 

time of the program, but still need to consume a lot of memory, CPU or GPU resources when processing the Jacobian matrix. 

There are also solution methods that do not need to store and update the Jacobian matrix, such Quasi-steady State 

Approximation (QSSA), multistep explicit and semi-implicit methods (Mott et al., 2000; R. and Boris, 1977). But these 60 
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methods usually do not conserve mass (Cariolle et al., 2017). There are also fully implicit methods that do not need to deal 

with the Jacobian matrix, such as Euler Backward Iterative (EBI) (Hertel et al., 1993). EBI method is widely used in 3D 

chemical transport model (e.g., Community Multiscale Air Quality model, Nested Air Quality Prediction Modeling System) 

because it is computationally efficient. But EBI solver has a large truncation error because it is only first-order accurate. 

Another stiff ODEs preconditioner method based on Newton linearization, also simplifies the matrix operations during the 65 

solution (Aro, 1996b). However, these algorithms may fail to converge when the Jacobian matrix is significantly off-diagonally 

dominant (Aro, 1996a). Hence, with the increasing of complexity and scale of chemical mechanism systems, it is still a 

challenge to make these solving algorithms converge stably.  

Rapid adaptive Optimization Model for Atmospheric Chemistry (ROMAC) is a computationally efficient photochemical 

box model. A variable-step and variable-order solver without Jacobian matrix processing is developed for the ROMAC model. 70 

Since the ROMAC model is computationally efficient, accurate and stable, users can dynamically optimize the influence of 

physical processes on pollutant concentration, and overcome the shortcomings of the lack of physical processes in the 

traditional box models. 

2 Description of the ROMAC model 

ROMAC is a 0-D model focused on the simulation of atmospheric chemical kinetics problem. It was developed to provide 75 

users with a flexible and efficient computational tool. The core modules of ROMAC were developed in Fortran, and the data 

pre-processing and post-processing modules were developed in python, which can keep the model running efficiently and 

provide users with flexible processing tools. In ROMAC, the changes in concentration of a species can mathematically be 

represented as Eq. (1). 

𝑑𝑐

𝑑𝑡
= [

𝑑𝑐

𝑑𝑡
]𝑐ℎ𝑒𝑚 + [

𝑑𝑐

𝑑𝑡
]𝑒𝑚𝑖𝑠 + [

𝑑𝑐

𝑑𝑡
]𝑑𝑟𝑦 + [

𝑑𝑐

𝑑𝑡
]𝑑𝑖𝑙𝑢 + [

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠    (1) 

Where [
𝑑𝑐

𝑑𝑡
]𝑐ℎ𝑒𝑚 represent the changes due to chemical reactions; [

𝑑𝑐

𝑑𝑡
]𝑒𝑚𝑖𝑠 represents the emission rate for the species; [

𝑑𝑐

𝑑𝑡
]𝑑𝑟𝑦 80 

and [
𝑑𝑐

𝑑𝑡
]𝑑𝑖𝑙𝑢  represent the dry deposition and dilution, respectively. For dry deposition, ROMAC uses the maximum dry 

deposition velocity (cm s-1) calculated by Zhang et al (2003)  to estimate the dry deposition process of the species, and user 

can also customize this value. The dry deposition process is added to the model in the form of first-order kinetics, and the 

kinetic constant is calculated by the dry deposition velocity and the preset boundary layer height (cm). For dilution, similar to 

other models (Wolfe et al., 2016; Sommariva et al., 2020), ROMAC uses first-order kinetics to calculate the dilution process, 85 

and users can customize the constants of the dilution process. 
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In addition, ROMAC model sets a user-defined term of rate ([
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠), and the user can add additional change rates if 

needed, such as the gas-wall partitioning in the chamber studies and the external transport in field observations. Users can also 

define [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 as physical processes (e.g., vertical and horizontal transport), and estimate the contribution of the physical 

process to the pollutant concentration by the dynamical optimization algorithm. It helps to overcome the shortcomings of the 90 

over-simplified physical modules in the traditional box models. 

2.1 High efficiency solver for atmospheric chemical kinetic equations 

Unlike most existing models, ROMAC does not rely on third-party libraries for numerical solving. ROMAC has its own 

computationally efficient numerical solver. The solver in ROMAC is optimized according to the characteristics of the 

atmospheric chemical mechanism, and it will be a universal chemical solver.  95 

Chemical mechanism is the core of atmospheric chemical box model. Generally, chemical reaction equations can be described 

in Eq. (2).  

α1r1 + α2r2 + … +αnrn → β1p1 +β2p2 + …+βmpm (2) 

Where α and β represents stoichiometric number, r and p represent reactant and product, respectively. Hence, derivative of 

species concentration with respect to time can be described as an ODEs system shown in Eq. (3). For specie i, fi can be 

calculated by Eq. (4). In Eq. (4), Pi,t and Li,t denote the chemical generation rate and the loss rate of species i at time t, 100 

respectively. It is worth to note that the loss rate is related to the concentration of species i. Therefore, to facilitate the 

subsequent formula derivation, Li,t can be described as a multivariate higher-degree equations for the concentration of species 

i shown in Eq.(5). Where Rtot represents the number of the reactions related to the loss rate of species i; α is the stoichiometric 

number, and li,t,R is the part of the chemical reaction rate that is not directly related to the concentration of species i. The 

computation of the f (Ct, t) follows the approach in the Fortran code provided by MCM official website 105 

(http://mcm.york.ac.uk/extract.htt). 

[
𝑑𝐶𝑡
𝑑𝑡
]𝑐ℎ𝑒𝑚 = 𝑓(𝐶𝑡, 𝑡) (3) 

𝑓𝑖(𝐶𝑖,𝑡 , 𝑡) = 𝑃𝑖,𝑡 − 𝐿𝑖,𝑡 (4) 

𝐿𝑖,𝑡 = ∑ 𝑙𝑖,𝑡,𝑅𝐶𝑖,𝑡
𝛼𝑅

𝑅𝑡𝑜𝑡

𝑅=1

 
(5) 

The lifetime of different species in atmospheric chemical mechanism varies greatly. For example, OH has an atmospheric 

lifetime of only seconds but O3 has a lifetime of several days. Therefore, the ODEs system of atmospheric chemical kinetics 

simulation is extremely stiff, and explicit methods (e.g., explicit Euler method, explicit Runge-Kutta method) are difficult to 

solve these problems.  110 
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In ROMAC, an implicit Euler method was used to solved the ODEs, the iteration formula is given in Eq. (6). Due to its 

superior numerical stability, this method has been widely used in other atmospheric chemistry models (Esentürk et al., 2018). 

However, due to the implicit Euler method only has first-order accuracy, it may introduce large truncation errors in the process 

of integration. Hence, the trapezoidal method iteration formula shown in Eq. (7) is used for integration in a specific situation. 

Both implicit Euler method and trapezoidal method have the term of 𝑓(𝐶𝑡+1, 𝑡 + 1) which is unknown at time t and needs to 115 

be solved. Newton–Raphson (NR) scheme is a popular method for solving such implicit equations. Newton–Raphson scheme 

will be described by Eq. (6) to Eq. (12). Equations (6) and (7) can be expressed in the form of Eq. (8) and Eq. (9), respectively.  

𝐶𝑡+1 =  𝐶𝑡 +  𝑓(𝐶𝑡+1, 𝑡 + 1)∆𝑡 (6) 

𝐶𝑡+1 =  𝐶𝑡 + 
𝑓(𝐶𝑡, 𝑡) + 𝑓(𝐶𝑡+1, 𝑡 + 1)

2
∆𝑡 (7) 

𝑔1(𝐶𝑡+1) =  𝐶𝑡+1 − 𝐶𝑡 −  𝑓(𝐶𝑡+1, 𝑡 + 1)∆𝑡 = 0 (8) 

𝑔2(𝐶𝑡+1) =  𝐶𝑡+1 − 𝐶𝑡 − 
𝑓(𝐶𝑡, 𝑡) + 𝑓(𝐶𝑡+1, 𝑡 + 1)

2
∆𝑡 = 0 (9) 

So, the iteration formula can be expressed in the form of Eq. (10). Where ∇𝑔−1(𝐶𝑡+1) the inverse matrix of the Jacobian 

matrix of g(Ct+1). The Jacobian matrix for the implicit Euler method is given in Eq. (11), and the Jacobian matrix for the 

trapezoidal method is given in Eq. (12). It should be noted that the size of Jacobian matrix and its inverse matrix will increase 120 

with the number of species in chemical mechanism increasing. In particular, dealing with explicit chemical mechanisms (e.g., 

MCM) would consume a lot of computer resources to store the Jacobian matrix and its inverse matrix. In addition, the inverse 

of a large-scale Jacobian matrix is quite time-consuming. 

𝐶𝑡+1
𝑘+1 = 𝐶𝑡+1

𝑘 − ∇𝑔−1(𝐶𝑡+1)𝑔(𝐶𝑡+1) (10) 

∇𝑔1(𝐶𝑡+1) =  

[
 
 
 
 
 1 −

𝜕𝑓1(𝐶1,𝑡+1)

𝜕𝐶1,𝑡+1
∆𝑡 ⋯ −

𝜕𝑓1(𝐶1,𝑡+1)

𝜕𝐶𝑛,𝑡+1
∆𝑡

⋮ ⋱ ⋮

−
𝜕𝑓𝑛(𝐶𝑛,𝑡+1)

𝜕𝐶1,𝑡+1
∆𝑡 ⋯ 1 −

𝜕𝑓𝑛(𝐶𝑛,𝑡+1)

𝜕𝐶𝑛,𝑡+1
∆𝑡
]
 
 
 
 
 

 (11) 

∇𝑔2(𝐶𝑡+1) =  

[
 
 
 
 
 1 −

𝜕𝑓1(𝐶1,𝑡+1)

𝜕𝐶1,𝑡+1
∆𝑡 −

𝜕𝐿1,𝑡+1
𝜕𝐶1,𝑡+1

∆𝑡

2
⋯ −

𝜕𝑓1(𝐶1,𝑡+1)

𝜕𝐶𝑛,𝑡+1
∆𝑡 +

𝜕𝑃1,𝑡+1
𝜕𝐶𝑛,𝑡+1

∆𝑡

2
−
𝜕𝐿1,𝑡+1
𝜕𝐶𝑛,𝑡+1

∆𝑡

2

⋮ ⋱ ⋮

−
𝜕𝑓𝑛(𝐶𝑛,𝑡+1)

𝜕𝐶1,𝑡+1
∆𝑡 +

𝜕𝑃𝑛,𝑡+1
𝜕𝐶1,𝑡+1

∆𝑡

2
−
𝜕𝐿𝑛,𝑡+1
𝜕𝐶1,𝑡+1

∆𝑡

2
⋯ 1 −

𝜕𝑓𝑛(𝐶𝑛,𝑡+1)

𝜕𝐶𝑛,𝑡+1
∆𝑡 −

𝜕𝐿𝑛,𝑡+1
𝜕𝐶𝑛,𝑡+1

∆𝑡

2 ]
 
 
 
 
 

 (12) 

A Simplified-Newton (SN) method can effectively reduce the computational complexity of the iterative process of NR 

method. Traditional SN method substitute the inverse Jacobian matrix obtained in the first iteration for the inverse matrix in 125 

the subsequent iterations. Although the traditional SN method can reduce the amount of computation, it still needs to calculate 

and store the inverse of the Jacobian matrix at each time step. To further improve the computational efficiency, ROMAC uses 

a Diagonal-Simplified-Newton (DSN) method to solve the implicit equations.  
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When the Δt in Eq. (11) and Eq. (12) is small enough, the Jacobian matrix of g(Ct+1) will be a diagonally dominant matrix 

or a quasi-diagonally dominant matrix. Under these conditions, the inverse matrix of Jacobian can be approximated by Eq. 130 

(13). According to the equations associated with the implicit Euler method in Eq. (1) to Eq. (13), the iteration formula for 

specie i is shown in Eq. (14). Where k represents the number of iterative solutions. Previous study has also shown that such 

approximations are reliable (Aro, 1996a). Similarly, the approximate inverse of the Jacobian matrix for the trapezoidal method 

and the iterative formulas for the solution can be derived as shown in Eq. (15) and Eq. (16), respectively.  

∇𝑔1
−1(𝐶𝑡+1) ≈  

[
 
 
 
 
 
 

1

1 −
𝜕𝑓1(𝐶1,𝑡+1)
𝜕𝐶1,𝑡+1

∆𝑡

⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

1 −
𝜕𝑓𝑛(𝐶𝑛,𝑡+1)
𝜕𝐶𝑛,𝑡+1

∆𝑡
]
 
 
 
 
 
 

 (13) 

𝐶𝑖,𝑡+1
𝑘+1 =  

∑ (𝛼𝑅 − 1)𝑙𝑡+1,𝑅𝐶𝑖,𝑡+1
𝑘 𝛼𝑅

∆𝑡
𝑅𝑡𝑜𝑡
𝑅=1 + 𝐶𝑖,𝑡 + 𝑃𝑡+1∆𝑡

1 + ∑ 𝛼𝑅𝑙𝑡+1,𝑅𝐶𝑖,𝑡+1
𝑘 𝛼𝑅−1∆𝑡

𝑅𝑡𝑜𝑡
𝑅=1

 (14) 

∇𝑔2
−1(𝐶𝑡+1) ≈  

[
 
 
 
 
 
 

1

1 −
𝜕𝑓1(𝐶1,𝑡+1)
𝜕𝐶1,𝑡+1

∆𝑡 −
𝜕𝐿𝑡+1
𝜕𝐶1,𝑡+1

∆𝑡
2

⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

1 −
𝜕𝑓𝑛(𝐶𝑛,𝑡+1)
𝜕𝐶𝑛,𝑡+1

∆𝑡 −
𝜕𝐿𝑡+1
𝜕𝐶𝑛,𝑡+1

∆𝑡
2 ]
 
 
 
 
 
 

 (15) 

𝐶𝑖,𝑡+1
𝑘+1 =  

∑ (𝛼𝑅 − 1)𝑙𝑡+1,𝑅𝐶𝑖,𝑡+1
𝑘 𝛼𝑅

∆𝑡
𝑅𝑡𝑜𝑡
𝑅=1 + 2𝐶𝑖,𝑡 + 𝑃𝑖,𝑡∆𝑡 − 𝐿𝑖,𝑡∆𝑡 + 𝑃𝑖,𝑡+1∆𝑡

2 + ∑ 𝛼𝑙𝑡+1,𝑅𝐶𝑖,𝑡+1
𝑘 𝛼𝑅−1∆𝑡

𝑅𝑡𝑜𝑡
𝑅=1

 (16) 

It's worth noting that if all of the stoichiometric number (αR) is equal to 1, Eq.(14) is the same as the iteration formula of EBI 135 

solver (Hertel et al., 1993) used in CMAQ model. In this study, Eq. (14) provides a generalized form of the EBI iteration 

formula. Hertel’s (1993) study shows that EBI solver has the advantages of high computational efficiency and high accuracy. 

However, the convergence condition of this method has not been discussed, such as how to choose the optimal integration 

time step size to make the solution process stable and convergent. If the time step size was too short, the computational 

efficiency will decrease. However, if the time step size is too large, the Jacobian matrix will not be diagonally dominant, it 140 

will lead algorithm hard to converge or even not converge. This problem also exists in the EBI algorithm. Especially for such 

a complex chemical mechanism as MCM, directly using the EBI scheme will have a large risk of causing the algorithm not to 

converge. In ROMAC, a variable time step and variable order scheme was developed to balance the computational efficiency 

and accuracy. The variable time step scheme can also maintain the Jacobian matrix as a quasi-diagonally dominant matrix and 

reduce the risk of convergence failure. Hence, the numerical solver in ROMAC model will overcome the shortcoming of EBI 145 

solver. 

Actually, it is difficult to use a fixed time step to ensure that the Jacobian matrix is always quasi-diagonally dominant. In 

order to find the optimal time step, a variable time step size scheme is used in our model. First, Δt0 is defined as an extremely 
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small positive value to ensure that this value is not less than the rounding error of the computer. According to IEEE Std 754-

2008 (Committee, 2008), Δt0 is defined as 2.22×10-16 seconds in ROMAC. Secondly, Δt1 is defined as atmospheric lifetime of 150 

the species with the shortest lifetime in the chemical mechanism, as shown in Eq. (17). Third, a strict diagonal dominance 

matrix requires that the diagonal elements are greater than the sum of the rest of the elements in the same row, as shown in Eq. 

(18). Hence, Δt2,i is calculated by Eq.(19) to ensure that Eq.(18) holds, and Δt2 is the minimum in the set of Δt2,i shown in 

Eq.(19). Where i represents the rows of the Jacobian matrix. Finally, the initial integration time step size is determined by Eq. 

(21).  155 

∆𝑡1 = [
1

𝐿𝑡
]𝑚𝑖𝑛 (17) 

|∇𝑔(𝐶𝑡+1)𝑖,𝑖| >∑|∇𝑔(𝐶𝑡+1)𝑖,𝑗|

𝑛

𝑗=1

 (18) 

∆𝑡2,𝑖 =  
0.9

(∑ |
𝜕𝑓𝑖(𝐶1,𝑡+1)
𝜕𝐶𝑗,𝑡+1

|)𝑛
𝑗=1

 
(19) 

∆𝑡2 = [∆𝑡2,𝑖]𝑚𝑖𝑛 (20) 

∆𝑡𝑖𝑛𝑖𝑡 = {

∆𝒕𝟎      (              ∆𝑡0 ≥ ∆𝑡1 𝑎𝑛𝑑 ∆𝑡0 ≥ ∆𝑡2               )

∆𝒕𝟏      (∆𝑡0 < ∆𝑡1 𝑎𝑛𝑑 ∆𝑡0 < ∆𝑡2 𝑎𝑛𝑑 ∆𝑡2 ≥ ∆𝑡1)
∆𝒕𝟐      (∆𝑡0 < ∆𝑡1  𝑎𝑛𝑑 ∆𝑡0 < ∆𝑡2 𝑎𝑛𝑑 ∆𝑡2 < ∆𝑡1)

 (21) 

In order to improve the computational efficiency, the integration time step size should grow while ensuring the accuracy of 

the solution. When the time step size grows, the local truncation error (LTE) should be controlled. In each step (Δt), ROMAC 

model uses both single-step and double-step methods for integration, and the calculated results are recorded as 𝐶∆𝑡 and 𝐶∆𝑡
2

, 

respectively. LTE is estimated by the difference between 𝐶∆𝑡  and 𝐶∆𝑡
2

 ( 𝐿𝑇𝐸 =  |𝐶∆𝑡
2

 − 𝐶∆𝑡| ), and the relative error is 

estimated by Eq. (22). This method has been successfully used in previous study (Aro, 1996b). 160 

𝑅𝐸𝑅𝑅 = [

|𝐶∆𝑡
2
 − 𝐶∆𝑡|

1 + 𝐶∆𝑡
]𝑚𝑖𝑛 

(22) 

The model needs to adjust the integration time step according to the tolerance preset by user. This requires inferencing a 

maximum integration time step based on the preset tolerance. According to the Lagrange remainder of Taylor formula, the 

RERR of the integration result can also be expressed as Eq. (23). Where s is the order of integration accuracy, equal to 1 for 

the implicit Euler method and equal to 2 for the trapezoidal method. Similarly, the user-specified maximum integral relative 

error can be expressed as Eq. (24). Where Δtmax is an estimate of the maximum step size allowed when the preset rtol condition 165 

is satisfied. In ROMAC, the values of ξ1 and ξ2 in Eq. (23) and Eq. (24) are assumed to be approximate (ξ1 ≈ ξ2). According to 

Eq. (23) and Eq. (24), the maximum integration time step can be estimated by Eq. (25). Finally, the integration time step is 
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updated according to Eq. (26) and Eq. (27) to make sure that the time step not larger than the maximum time step. In order to 

avoid a too accurate result make the integration step size grow too large, when Δtopt is greater than Δt by a factor of 10, the 

time step is only increased by a factor of 10. In general, as the integration step size increases, the number of iterations (N) 170 

required by the solver in this study will also increase. Too many iterations will make the computation time-consuming, so the 

integration time step is not increased when the solver iteration time exceeds 50 (N ≥ 50). 

𝑅𝐸𝑅𝑅 =
𝑅𝑛(∆𝑡)

1 + 𝐶∆𝑡
= 

𝑓(𝑠+1)(𝜉1)Δ𝑡
𝑠+1

(1 + 𝐶∆𝑡)  × (𝑠 + 1)!
 (23) 

𝑟𝑡𝑜𝑙 =
𝑅𝑛(∆𝑡𝑚𝑎𝑥)

1 + 𝐶∆𝑡
= 

𝑓(𝑠+1)(𝜉2)Δ𝑡𝑚𝑎𝑥
𝑠+1

(1 + 𝐶∆𝑡)  × (𝑠 + 1)!
 (24) 

∆𝑡𝑚𝑎𝑥 = (
𝑟𝑡𝑜𝑙

𝑅𝐸𝑅𝑅
)

1
𝑠+1

∆𝑡𝑡 
(25) 

∆𝑡𝑜𝑝𝑡 = 0.9∆𝑡𝑚𝑎𝑥 (26) 

∆𝑡𝑡+1 = {

∆𝑡𝑜𝑝𝑡    (∆𝑡𝑜𝑝𝑡 < 10∆𝑡𝑡 𝑎𝑛𝑑 𝑁 < 50)

10∆𝑡𝑡   (∆𝑡𝑜𝑝𝑡 ≥ 10∆𝑡𝑡 𝑎𝑛𝑑 𝑁 < 50)

∆𝑡𝑡                                             (𝑁 ≥ 50)

 (27) 

ROMAC model has a strict control on the truncation error of integration according to the relative tolerance (rtol) and the 

absolute tolerance (atol) specified by the user. If RERR < rtol or LTE < atol, proceed to the next integration time, otherwise 

the integration time step is halved and re-integrated until the tolerance requirement is satisfied. 175 

Another important question is whether to choose the implicit Euler method or the trapezoidal method for the integration 

process. Both implicit Euler method and trapezoidal method are stable for stiff ODEs. However, the solution method used in 

this study requires the Jacobian matrix to be diagonally dominant or quasi-diagonally dominant. Since the initial time step in 

Eq. (18) and Eq. (19) are derived from the implicit Euler method, the implicit Euler method is used for integral starting. If the 

algorithm converges quickly (N < 50), then the trapezoidal method is used on the next integration time step. When N is greater 180 

than 50, the algorithm is switched to implicit Euler method on the next integration time step to improve the computational 

efficiency.  

The solver for ROMAC uses a variable-step and variable-order approach (VSVOR) to solve stiff ODEs problems. Most of 

the time, the accuracy of VSVOR is second order. The VSVOR solver has comparable computational efficiency with the EBI 

solver, and the solution accuracy and stability are better.  185 

2.2 Adaptive dynamic optimization module and variables constraints 

ROMAC can be run under user-specified variable constraints, including but not limited to concentrations of chemical species, 

photolysis rate, temperature, humidity, pressure and other meteorological conditions. For concentrations of chemical species, 

ROMAC provides the user with three different constraint schemes.  
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Scheme 1: 190 

Different from previous models, ROMAC provides a novel constraint scheme to use the observed data to constrain model run. 

Scheme 1 does not directly input the species concentration, but control the [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 term with adaptive dynamic optimization 

algorithm. The default value for [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠  is 0, after integration, ∆[

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠  can be estimated by the gap between the 

observed and simulated values, as detailed in Eq. (28).  

∆[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 =

{
 

 
𝐶𝑜𝑏𝑠,𝑛+1 − 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1

𝑡𝑛+1 − 𝑡𝑛
       (|𝐶𝑜𝑏𝑠,𝑛+1 − 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1| ≤ 0.1 × |𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1|)

0.1 × 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1
𝑡𝑛+1 − 𝑡𝑛

× (−1)𝑢( |𝐶𝑜𝑏𝑠,𝑛+1 − 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1| > 0.1 × |𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1|)

 (28) 

Where Cobs represents the observations and Cmodel represents the simulations. In Eq. (28), u = 1 when 𝐶𝑜𝑏𝑠,𝑛+1 is less than 195 

𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1 and u = 2 when 𝐶𝑜𝑏𝑠,𝑛+1 is greater than 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1. In complex systems, changing [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 may also affect 

other chemical process, so the relationship between [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 and simulation results may be nonlinear. Therefore, it is difficult 

to calculate [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 in a single iteration. It is necessary to estimate by loop iteration until the difference between observation 

and simulation reaches a preset tolerance. In this study, the difference between observation and simulation is characterized by 

Root Mean Square Error (RMSE) shown in Eq. (29).  200 

𝑅𝑀𝑆𝐸 = √(𝐶𝑜𝑏𝑠,𝑛+1 − 𝐶𝑚𝑜𝑑𝑒𝑙,𝑛+1)
2 (29) 

The cyclic dynamically optimization process of [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 is shown in Figure 1. The iterative updating formula of [

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 

based on Newton–Raphson method is given in Eq. (30).  

[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠

𝑚+1
= 

{
 
 

 
 [

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠

𝑚
+ ∆[

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠                           (𝑚 = 1)

[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠

𝑚
− 𝑅𝑀𝑆𝐸𝑚 ∙ [

𝑑𝑅𝑀𝑆𝐸

𝑑[
𝑑𝑐

𝑑𝑡
]
𝑜𝑡ℎ𝑒𝑟𝑠

]

𝑚

−1

   (𝑚 > 1)
   (30) 

[
𝑑𝑅𝑀𝑆𝐸

𝑑[
𝑑𝑐

𝑑𝑡
]
𝑜𝑡ℎ𝑒𝑟𝑠

]𝑚 = [
∆𝑅𝑀𝑆𝐸

∆[
𝑑𝑐

𝑑𝑡
]
𝑜𝑡ℎ𝑒𝑟𝑠

]𝑚 =  
𝑅𝑀𝑆𝐸𝑚−𝑅𝑀𝑆𝐸𝑚−1

[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠

𝑚
− [

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠

𝑚−1

  (31) 

Where m is the number of iterations and ∆[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 at the first iteration (m = 1) are estimated by Eq. (28). When the number 

of iterations is greater than 1 (m > 1), the update equation of ∆[
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 is developed base on New-Raphson method. The 

RMSE is used as the objective function for optimization, and the derivative of RMSE with [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠  is estimated by the 205 

Difference Method (DM) shown in Eq. (31).  
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The [
𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 can also be optimized in the mode of kinetic equations (e.g., [

𝑑𝑐

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑘𝑜𝑡ℎ𝑒𝑟𝑠 × 𝐶), and then the kinetic 

constants (kothers) can be optimized using a similar process shown in Figure 1. ROMAC model provides an option for the user 

to switch between these two modes. Furthermore, user can also use other algorithms for dynamic optimization, such as 

Ensemble Kalman Filter (EnKF). 210 

 

Figure 1. The cyclic dynamically optimization process of [
𝒅𝒄

𝒅𝒕
]𝒐𝒕𝒉𝒆𝒓𝒔.  

Scheme 2: 

In Scheme 2, the concentration of species can be initialized at the beginning of each simulation time step, which is mainly 

applied to the solution of initial value problems and more suitable for chamber simulation. This scheme has been widely used 215 

in previous models (e.g., PBM-MCM, AtChem, F0AM). However, if the regional transport process of pollutants is not 

considered, the simulation results of long-lived species in this scheme may have large deviations from the observed results.  

Scheme 3: 

Scheme 3 constrains the change rate of species concentration (
𝑑𝑐

𝑑𝑡
= 0) while constraining the initial concentration, in a similar 

way as in F0AM. The advantage of this scheme is that the constrained variables can be kept at a user-specified level throughout 220 

the simulation. In this scheme, the long-lived species can maintain the observed concentration level. This constraining is 

appropriate if the temporal resolution of the observed data is high. The time interval of the model should be significantly 

smaller than the lifetime of constrained species. However, this approach also has its limitations. Since species concentrations 

are constrained as a constant, chemical imbalances may result in. 

In order to better understand the characteristics of different constraint schemes, a simple running case was performed. Nitric 225 

Oxide was constrained by three different schemes and exhibits its concentration variation characteristics. Figure 2 illustrates 

the model output results of a test under different schemes to constrain species concentration. The output time step is 120 
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seconds, and the input interval of the observed data is 3600 seconds. In scheme 2, since emissions and regional transport are 

not considered, the concentration will decrease rapidly and then reach steady-state. Both scheme1 and scheme 3, the 

concentration of NO in the model is well consistent with the observed hourly average concentration, which allows the state of 230 

the model to be consistent with the real atmospheric state. Due to different constraint schemes, the simulated concentrations 

of short-lived species (e.g., OH) will also differ. Users should choose a reasonable scheme according to the needs of their 

research and observation results. 

 

Figure 2. Model output results under different concentration constraint schemes. (a) Variation characteristics of NO concentration 235 

in the model under different constraint schemes. (b) OH radical concentrations under different schemes corresponding to the left 

plot. 

2.3 Photolysis 

ROMAC provides two ways for the user to set the photolysis rate. First, the user can specify the photolysis rate at each 

integration time step in the form of an ASCII file. The input photolysis rate can be estimated by other models or the 240 

observations. In the ROMAC model, a python script (TUV2ROMAC.py) is provided for coupling the output of the Tropospheric 

Ultraviolet and Visible radiation model (TUVv5.2, available at https://www2.acom.ucar.edu/modeling/tropospheric-

ultraviolet-and-visible-tuv-radiation-model). Users can easily use this tool to convert the TUV model output results into 

ROMAC input files. 

ROMAC provides users with an inline calculation module to calculate photolysis.  In the current version, the inline 245 

calculation module of photolysis uses the algorithm provided by MCM, an algorithm based on the solar zenith Angle (SZA). 

The trigonometric parameterization function is shown in Eq. (32). The parameters of l, m, n are provided by MCM 

(http://mcm.york.ac.uk/).  

𝐽 = 𝑙 × cos (𝑆𝑍𝐴)𝑚 × 𝑒−𝑛 × 𝑠𝑒𝑐(𝑆𝑍𝐴) (32) 

If both the input photolysis rate and the inline calculated photolysis rate are present, ROMAC will use the input photolysis 

rate preferentially. In addition, ROMAC provides the user with a photolysis rate modification factor (Jrate), users can easily 250 
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use this factor to adjust the photolysis rate in the model. The default value of Jrate is 1.0, and the actual photolysis rate used 

in the model is the input rate or the inline calculated rate multiplied by Jrate.  

2.4 Model accuracy and computational efficiency 

The comparison of ROMAC with AtChem, F0AM and FACSIMILE which is widely used for MCM was performed on a PC 

with a CPU of 16-core AMD Ryzen 9 3950X at 3.5 GHz and 32 GB RAM. The computational efficiency of the model is 255 

evaluated by CPU time. AtChem, ROMAC, and PBM-MCM are all run using a single core and the CPU time is recorded by 

the software's built-in function. The CPU time used by F0AM is recorded by the function cputime in MATLAB. The total 

integration time is 259,200 seconds, and the integration time step is 900 seconds. The settings of atol (10-4) and rtol (10-3) in 

the models are consistent. The temperature, pressure and humidity in the scenario simulation are 25oC, 101.325 kPa and 35%, 

respectively. The chemical mechanism used in this test is MCM v3.3.1, and the initial species concentrations are shown in 260 

Table A1. Since running the entire version of MCM v3.3.1 using AtChem is computationally excessive for our computing 

platform, we only selected the VOCs include in EPA’s Photochemical Assessment Monitoring Stations (PAMS) Target List 

(https://www.epa.gov/amtic/ ) and exported the mechanism file from MCM website. In this test case, 3,899 species and 11,814 

chemical reactions were included. 

In this study, we assumed that the solution results of AtChem based on the CVODE library are accurate. Therefore, the 265 

accuracy of the model is evaluated by calculating the relative difference between the solution results of ROMAC and AtChem 

(Eq. (33)).  

𝑅𝐸𝑡 = 
|𝐶𝑅𝑂𝑀𝐴𝐶,𝑡 − 𝐶𝐴𝑡𝐶ℎ𝑒𝑚,𝑡|

|𝐶𝐴𝑡𝐶ℎ𝑒𝑚,𝑡|
 × 100% (33) 

Both EBI and VSVOR solvers in the ROMAC model are evaluated. Figure A1 shows a comparison of simulation results 

for nine species, including radicals and gaseous pollutants, which are commonly used in previous studies to evaluate solution 

results (Hertel et al., 1993; Esentürk et al., 2018; Aro, 1996a). As shown in Figure A1, the solution results of ROMAC and 270 

AtChem are comparable, indicating that the solution results of ROMAC are comparable to the high-precision solution 

algorithm. Figure 3 illustrates the maximum relative error in the scenario simulation and the CPU time used by each model. 

The maximum relative errors between the results of the VSVOR solver and the results of AtChem are all smaller than the 

preset rtol. Compared with the single-step EBI solver, the VSVOR solver with variable time step and variable order can better 

control the truncation error. Compared with the CPU time required to run, the VSVOR solver with higher solution accuracy is 275 

even more efficient than EBI. The CPU time consumed by EBI with different integration time steps is shown in Table A2. For 

the MCM chemical mechanism, the algorithm fails to converge when the integration time step is longer than 50 seconds. After 
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a series of tests, we found that even with an integration time step of 10 seconds, the EBI solver was at risk of failing to converge. 

Too small integration time step size makes EBI not efficient in solving MCM mechanism.  

Compared with other models, ROMAC has greatly improved the computational efficiency of solving large-scale chemical 280 

mechanisms. The computational efficiency of ROMAC is 97% higher than that of F0AM and AtChem, and 96% higher than 

that of FACSIMILE.  

 

Figure 3. Accuracy evaluation and comparison of model computational efficiency. (a) Maximum relative error between the 

integration results of ROMAC and AtChem. (b) CPU time used to run compare with other models. 285 

3 Application of ROMAC model 

3.1 Chamber study 

A chamber experiment for toluene degradation was used to evaluate the capabilities of ROMAC model to dynamically 

optimize chemical and physical processes. In this case, the indoor smog chamber in JNU-VMDSC was used to simulate the 

degradation of toluene. The JNU-VMDSC provides a reliable experimental platform, and its structure and characterization 290 

(e.g., wall loss, light intensity, airtightness test) have been described in previous study (Wang et al., 2023). Toluene and 

isoprene were injected into the chamber before the UV light was turned on. The initial mixing ratios of toluene and isoprene 

were 2,157 ppbv and 160 ppbv, respectively. 

In order to simulate the effect of the dilution process on the toluene concentration, nitrogen was injected into the chamber 

at a flow of 7 L/min, while sampling was carried out at a flow of 7 L/min at the sampling port. Similar to previous studies 295 

(Dada et al., 2020; Jiang et al., 2020), the rate of dilution was calculated using Eq. (34) and Eq. (35). 

[
𝑑𝑐

𝑑𝑡
]𝑑𝑖𝑙𝑢 = 

𝐶 × 𝑑𝑣

𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟 × 𝑑𝑡
=  𝑘𝑑𝑖𝑙𝑢  × 𝐶 (34) 
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𝑘𝑑𝑖𝑙𝑢 = 
1

𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟  
×
𝑑𝑣

𝑑𝑡
=  

𝐹𝑙𝑜𝑤

𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟
 (35) 

Where kdilu is the rate constant of dilution, Vchamber is the volume of chamber (8000 L), and Flow is the flow of nitrogen 

injection. Therefore, the theoretically estimation result of kdilu in this case is 1.458×10-5 s-1. Wall loss was not considered in 

this simple experiment with gaseous pollutants.  

The version of the chemical mechanism used in the model simulations is MCM v3.3.1, all species and mechanisms in MCM 300 

are included. Three scenarios case were set up to evaluate the simulation capabilities of ROMAC. In scenario 1, only chemical 

processes were considered (Eq. (36)). In scenario 2, chemical processes and dilution processes were considered (Eq. (37)). In 

scenario 3, we assume that the results of the experiment are influenced by an unknown process, and this process is assumed to 

be a first-order kinetic process (Eq. (38)). The kothers in scenario 3 was dynamically optimized with scheme 1 as described in 

Section 2.2. Theoretically, the value of kothers obtained by the dynamically optimization in scenario 3 should be close to kdilu in 305 

scenario 2.  

𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

= [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑐ℎ𝑒𝑚 
(36) 

𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

= [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑐ℎ𝑒𝑚 + [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑑𝑖𝑙𝑢 = [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑐ℎ𝑒𝑚 + 𝑘𝑑𝑖𝑙𝑢 × 𝐶𝑇𝑜𝑙𝑢 
(37) 

𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

= [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑐ℎ𝑒𝑚 + [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑜𝑡ℎ𝑒𝑟𝑠 = [
𝑑𝑐𝑇𝑜𝑙𝑢
𝑑𝑡

]𝑐ℎ𝑒𝑚 + 𝑘𝑜𝑡ℎ𝑒𝑟𝑠 × 𝐶𝑇𝑜𝑙𝑢 
(38) 

The total duration of the chamber experiment was 8 hours, and the CPU time consumed by a single simulation of ROMAC 

was about 13 seconds. Figure 4 illustrates the comparison results between the simulated and observed toluene mixing ratios 

for different scenario cases. Due to the lack of dilution process in scenario 1, there is a large gap between simulation results 

and observations. After considering the dilution process, the simulation of scenario 2 was improved, which indicates that the 310 

setting of scenario 2 is reasonable. The simulation results of scenario 3 agree well with the observations, which indicates that 

the dynamic optimization algorithm successfully captures the process that cannot be explained by the MCM chemical 

mechanism. Figure 4b illustrates the chemical loss rate of toluene under different simulation scenarios. The results of scenario 

3 and scenario 2 are consistent and significantly different from the results of scenario 1. This indicates that the dynamic 

optimization algorithm can improve the chemical process while optimizing the physical process. Ignoring physical processes 315 

in the traditional box model may introduce large uncertainty to the simulation results. The optimized value of kothers in scenario 

3 is comparable to kdilu in scenario 2 (Figure 4c), which indicates that the dynamically optimized algorithm is reliable. Based 

on dynamic optimization, ROMAC can overcome the shortcomings of the over-simplified physical process in the traditional 

box model.  

 320 
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Figure 4. Model simulation results. (a) Comparison results between the simulated and observed toluene mixing ratios. (b) Chemical 

loss rate of toluene. (c) Comparison of kinetic constants in dilution process. Error bars indicate the standard deviation of kothers at 

different times in scenario 3. 

 325 

3.2 Field Observation 

This case demonstrates the application of the ROMAC model to the analysis of the photochemical process of O3 formation 

and the dynamical optimization of physical processes. The observation data were obtained at the Heshan Atmospheric 

Supersite (22.728◦N, 112.929◦E) in Guangdong Province, China. Detailed description of the Heshan site can be found in 

previous publications (He et al., 2019; Yang et al., 2017). The observation period was from April 4, 2021 to April 10, 2021. 330 

Meteorological parameters and the mixing ratios of NOx, VOCs, SO2, CO were constrained by Scheme 3. The concentrations 

of NOx and VOCs were shown in Figure 5a, with the meteorological observations in Figure A2. 

The simulation of O3 was constrained by Scheme 1. In this case, all physical processes of O3 (e.g., dry deposition, dilution, 

transport) were merged into [
𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠. The rate of change of O3 is shown in Eq. (39). The optimal estimate of [

𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 

uses the scheme 1 shown in Figure 1.  335 

𝑑𝑐𝑂3
𝑑𝑡

= [
𝑑𝑐𝑂3
𝑑𝑡

]𝑐ℎ𝑒𝑚 + [
𝑑𝑐𝑂3
𝑑𝑡

]𝑜𝑡ℎ𝑒𝑟𝑠  
(39) 
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The comparison between the optimized simulation results and the observations of O3 mixing ratios is shown in Figure 5b. 

As expected, the model outputs are consistent with the observations due to the dynamic optimization. The estimated value of 

[
𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 for the physical process is shown in Figure 5c. Positive values of [

𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 indicate that physical processes 

increase local O3 concentration (e.g., external transport), while negative values indicate that decrease O3 concentration (e.g., 

dilution, deposition). As displayed in Figure 5c, [
𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 is usually negative during the daytime, indicating that O3 was 340 

transported out of the region after formation by photochemical processes. However, positive values of [
𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 can also 

occur during the daytime. On April 6, the surface ozone mixing ratio increased rapidly, and the maximum hourly mixing ratio 

exceeded China II Emission Standard (>100 ppbv). The value of [
𝑑𝑐𝑂3

𝑑𝑡
]𝑜𝑡ℎ𝑒𝑟𝑠 on the afternoon of April 6 is positive, indicating 

that physical processes were one of the reasons for the occurrence of O3 pollution.  

The rate of O3 chemical production and precursor sensitivities were calculated using a method described in previous studies 345 

(Liu et al., 2022; Wang et al., 2018). As displayed in Figure 5d, the net O3 production rate on April 6, 2021 was significantly 

higher than that on other days, indicating that chemical processes were also an important cause of O3 pollution. The sensitivity 

of the O3 formation to its precursors can be represented by relative incremental reactivity (RIR). Figure 6 shows the daily 

average RIR values of VOCs, NOx and CO. The RIR values of VOCs and CO were positive, which indicates that reducing the 

concentration of VOCs and CO can effectively reduce the chemical formation of O3. Except for April 8, the RIR values of 350 

NOx were negative, indicating that decreasing the NOx concentration leads to an increase in O3 concentration. The negative 

values of RIR for NOx and higher positive values of RIR for VOC indicate that the ozone formation at the Heshan Atmospheric 

Supersite was mostly likely under VOC limited regime. The result was well consistent with a previous study (He et al., 2019), 

indicating that the application of ROMAC in chemical process diagnosis is reliable. 

The application of this case demonstrates the ability of the ROMAC model to quantify the contribution of physical and 355 

chemical processes to air pollutant concentrations. Compared with the traditional Observation Based box Model (OBM), 

ROMAC overcomes the shortcomings of over-simplified physical modules. Compared with the emission-based 3D air quality 

model (e.g., CMAQ, WRF-Chem, NAQPMS), the observation-based dynamic optimization algorithm in ROMAC model 

reduces the uncertainty introduced by emission inventory and meteorological simulation.  
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 360 

Figure 5. Species mixing ratio and the rate of O3 change. (a) VOCs and NOx mixing ratios. (b) Model and observation O3 mixing 

ratios. (c) The effect of the physical process on the O3 mixing ratios calculated by the adaptive dynamic optimization module. (d) 

The rate of O3 chemical production. 

 

 365 

Figure 6. RIR values of O3 precursors, i.e., VOCs, NOx and CO.  
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4 Future development 

The ROMAC model will be continuously updated and developed. Functionality for future improvements and upgrades, 

includes 370 

— A multiphase chemical reaction module and a module for Gas–particle partitioning and sectional simulation are being 

developed. 

— Adjoint sensitivity analysis will be added in a future version, and users can use ROMAC to analyze the relationship 

between precursors and secondary pollutants. 

— The Ensemble Kalman Filter (EnKF) will be added to dynamically optimize the physical process in future versions. 375 

  

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



19 

 

Appendix A:  

Table A1. Initial species concentration used for model comparisons (unit: molecules·cm-3) 

Species concentration Species concentration Species concentration 

O3 5.20E+10 NC11H24 4.90E+08 TM123B 1.20E+09 

NO2 9.80E+11 NC12H26 9.80E+08 STYRENE 5.90E+09 

NO 9.80E+11 C2H4 4.70E+10 C4H6 4.90E+08 

CO 1.50E+13 C3H6 5.70E+09 BENZAL 1.90E+10 

SO2 7.50E+10 BUT1ENE 7.40E+08 CH3COCH3 9.10E+09 

NO3 1.40E+08 TBUT2ENE 2.50E+08 MEK 4.90E+10 

C2H2 6.20E+10 C5H8 2.50E+08   

C2H6 9.70E+10 PENT1ENE 1.80E+09   

C3H8 1.40E+11 TPENT2ENE 2.50E+08   

IC4H10 5.00E+10 CPENT2ENE 1.50E+09   

NC4H10 9.90E+10 HEX1ENE 2.50E+08   

IC5H12 1.30E+11 TOLUENE 1.00E+11   

NC5H12 1.70E+11 BENZENE 1.40E+10   

CHEX 1.70E+09 EBENZ 4.20E+10   

M22C4 1.20E+09 OXYL 5.80E+10   

M23C4 7.20E+09 IPBENZ 1.50E+09   

M3PE 7.40E+09 PBENZ 1.20E+09   

NC6H14 8.40E+09 OETHTOL 1.50E+09   

M2HEX 6.60E+09 METHTOL 2.00E+09   

M3HEX 6.40E+09 TM135B 2.50E+09   

NC7H16 4.40E+09 HCHO 1.20E+11   

NC8H18 4.40E+09 CH3CHO 3.90E+10   

NC9H20 4.40E+09 C2H5CHO 3.40E+09   

NC10H22 1.50E+09 C3H7CHO 1.70E+09   

PETHTOL 2.00E+09 MIBK 3.80E+11   

TM124B 2.20E+09 HEX2ONE 6.30E+11   

 

Table A2. CPU time used by the EBI solver at different integration time step sizes (unit: seconds). Nonconvergence represents that 380 

the EBI solver fails to converge. 

Time step 1 10 50 120 900 

CPU time 182.8 59.7 Nonconvergence Nonconvergence Nonconvergence 
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Figure A1. The integration results of the model comparison are compared with AtChem.  

 385 
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Figure A2. Meteorological data input to the model. (a) temperature. (b) relative humidity. (c) atmospheric pressure. (d) photolysis 

rate  

 

Code availability 390 

The current version of ROMAC coupled MCM v3.3.1 is archived on Zenodo: https://doi.org/10.5281/zenodo.7900781 under 

the Attribution 4.0 International licence.  

 

Data availability 

The input data used to produce the results used in this paper is archived on Zenodo (https://doi.org/10.5281/zenodo.7900710).  395 

 

 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



22 

 

Author contributions 

Jiangyong Li. The developer of all model source code and algorithms for ROMAC; Conceptualization; Formal analysis; 

Writing - Original Draft.  400 

Chunlin Zhang. Formal analysis; Writing - Review & Editing. 

Wenlong Zhao. Formal analysis; Software testing. 

Shijie Han. The principal investigator of chamber study case; Data curation. 

Yu Wang. Model Comparison and Evaluation.  

Hao Wang. Funding acquisition; Writing – review & editing. 405 

Boguang Wang. Funding acquisition; Writing – review & editing. 

 

Competing interests.  

The authors have declared no competing financial interest. 

 410 

Financial support. 

This work was supported by the National Natural Science Foundation of China (42121004, 42077190), and Science and 

Technology Project of Guangdong Province of China (2019B121202002).  

 

References 415 

Alvanos, M. and Christoudias, T.: GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth 

system model (version 2.52), Geoscientific Model Development, 10, 3679-3693, 10.5194/gmd-10-3679-2017, 2017. 

Aro, C. J.: A stiff ODE preconditioner based on Newton linearization, Applied Numerical Mathematic, 21, 335-352, 1996a. 

Aro, C. J.: CHEMSODE: a stiff ODE solver for the equations of chemical kinetics, Comput. Phys. Commun, 97, 304-314, 

1996b. 420 

Cariolle, D., Moinat, P., Teyssèdre, H., Giraud, L., Josse, B., and Lefèvre, F.: ASIS v1.0: an adaptive solver for the simulation 

of atmospheric chemistry, Geoscientific Model Development, 10, 1467-1485, 10.5194/gmd-10-1467-2017, 2017. 

Carter, W. P. L.: SAPRC-07 CHEMICAL MECHANISMS, TEST SIMULATIONS, AND ENVIRONMENTAL CHAMBER 

SIMULATION FILES, 2012. 

Chen, Y. Z., Sexton, K. G., Jerry, R. E., Surratt, J. D., and Vizuete, W.: Assessment of SAPRC07 with updated isoprene 425 

chemistry against outdoor chamber experiments, Atmospheric Environment, 105, 109-120, 10.1016/j.atmosenv.2015.01.042, 

2015. 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



23 

 

Cheng, H. R., Guo, H., Saunders, S. M., Lam, S. H. M., Jiang, F., Wang, X. M., Simpson, I. J., Blake, D. R., Louie, P. K. K., 

and Wang, T. J.: Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model, 

Atmospheric Environment, 44, 4199-4208, 10.1016/j.atmosenv.2010.07.019, 2010. 430 

Committee, M. S.: IEEE Standard for Floating-Point Arithmetic,  2008. 

Dada, L., Lehtipalo, K., Kontkanen, J., Nieminen, T., Baalbaki, R., Ahonen, L., Duplissy, J., Yan, C., Chu, B., Petaja, T., 

Lehtinen, K., Kerminen, V. M., Kulmala, M., and Kangasluoma, J.: Formation and growth of sub-3-nm aerosol particles in 

experimental chambers, Nat Protoc, 15, 1013-1040, 10.1038/s41596-019-0274-z, 2020. 

Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K. E., Pollack, I., Ryerson, T. B., Peischl, J., Edwards, P., Dube, W. P.,  435 

Markovic, M. Z., Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J., Hatch, L. E., Barsanti, K. C., and Brown, 

S. S.: Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft 

Observations, Environ Sci Technol, 53, 2529-2538, 10.1021/acs.est.8b05359, 2019. 

Decker, Z. C. J., Robinson, M. A., Barsanti, K. C., Bourgeois, I., Coggon, M. M., DiGangi, J. P., Diskin, G. S., Flocke, F. M., 

Franchin, A., Fredrickson, C. D., Gkatzelis, G. I., Hall, S. R., Halliday, H., Holmes, C. D., Huey, L. G., Lee, Y. R., Lindaas, 440 

J., Middlebrook, A. M., Montzka, D. D., Moore, R., Neuman, J. A., Nowak, J. B., Palm, B. B., Peischl, J., Piel, F., Rickly, P. 

S., Rollins, A. W., Ryerson, T. B., Schwantes, R. H., Sekimoto, K., Thornhill, L., Thornton, J. A., Tyndall, G. S., Ullmann, 

K., Van Rooy, P., Veres, P. R., Warneke, C., Washenfelder, R. A., Weinheimer, A. J., Wiggins, E., Winstead, E., Wisthaler, 

A., Womack, C., and Brown, S. S.: Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and 

model analysis of FIREX-AQ aircraft data, Atmospheric Chemistry and Physics, 21, 16293-16317, 10.5194/acp-21-16293-445 

2021, 2021. 

Esentürk, E., Abraham, N. L., Archer-Nicholls, S., Mitsakou, C., Griffiths, P., Archibald, A., and Pyle, J.: Quasi-Newton 

methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8, Geoscientific Model Development, 

11, 3089-3108, 10.5194/gmd-11-3089-2018, 2018. 

He, Z. R., Wang, X. M., Ling, Z. H., Zhao, J., Guo, H., Shao, M., and Wang, Z.: Contributions of different anthropogenic 450 

volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy 

implications, Atmospheric Chemistry and Physics, 19, 8801-8816, 10.5194/acp-19-8801-2019, 2019. 

Hertel, O., Berkowicz, R., and Christensen, J.: Test of two numerical schemes for use in atmospher, Atmospheric Environment, 

1993. 

Huang, L. and Topping, D.: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model, Geoscientific Model 455 

Development, 14, 2187-2203, 10.5194/gmd-14-2187-2021, 2021. 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



24 

 

Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry 

and Physics, 15, 11433-11459, 10.5194/acp-15-11433-2015, 2015. 

Jiang, X., Lv, C., You, B., Liu, Z., Wang, X., and Du, L.: Joint impact of atmospheric SO2and NH3on the formation of 

nanoparticles from photo-oxidation of a typical biomass burning compound, Environmental Science: Nano, 7, 2532-2545, 460 

10.1039/d0en00520g, 2020. 

Jimenez, P.: Comparison of photochemical mechanisms for air quality modeling, Atmospheric Environment, 37, 4179-4194, 

10.1016/s1352-2310(03)00567-3, 2003. 

Ling, Z. H., Zhao, J., Fan, S. J., and Wang, X. M.: Sources of formaldehyde and their contributions to photochemical O(3) 

formation at an urban site in the Pearl River Delta, southern China, Chemosphere, 168, 1293-1301, 465 

10.1016/j.chemosphere.2016.11.140, 2017. 

Liu, T., Hong, Y., Li, M., Xu, L., Chen, J., Bian, Y., Yang, C., Dan, Y., Zhang, Y., Xue, L., Zhao, M., Huang, Z., and Wang, 

H.: Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a 

typical photochemical episode by an observation-based model, Atmospheric Chemistry and Physics, 22, 2173-2190, 

10.5194/acp-22-2173-2022, 2022. 470 

Mott, D. R., Oran, E. S., and van Leer, B.: A Quasi-Steady-State Solver for the Stiff Ordinary Differential Equations of 

Reaction Kinetics, Journal of Computational Physics, 164, 407-428, 10.1006/jcph.2000.6605, 2000. 

Novelli, A., Kaminski, M., Rolletter, M., Acir, I. H., Bohn, B., Dorn, H. P., Li, X., Lutz, A., Nehr, S., Rohrer, F., Tillmann, 

R., Wegener, R., Holland, F., Hofzumahaus, A., Kiendler-Scharr, A., Wahner, A., and Fuchs, H.: Evaluation of OH and HO2 

concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation 475 

chamber SAPHIR, Atmospheric Chemistry and Physics, 18, 11409-11422, 10.5194/acp-18-11409-2018, 2018. 

O'Meara, S. P., Xu, S., Topping, D., Alfarra, M. R., Capes, G., Lowe, D., Shao, Y., and McFiggans, G.: PyCHAM (v2.1.1): a 

Python box model for simulating aerosol chambers, Geoscientific Model Development, 14, 675-702, 10.5194/gmd-14-675-

2021, 2021. 

R., Y. T. and Boris, J. P.: A Numerical Technique for Solving Ordinary Differential Equations Associated with the Chemical 480 

Kinetics of Reactive-Flow Problems, J. Phys. Chem., 81, 2424-2427, doi:10.1021/j100540a018, 1977. 

Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, 

A., Taraborrelli, D., Tost, H., and Xie, Z. Q.: The atmospheric chemistry box model CAABA/MECCA-3.0, Geoscientific 

Model Development, 4, 373-380, 10.5194/gmd-4-373-2011, 2011. 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



25 

 

Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R., and Potra, F. A.: BENCHMARKING STIFF ODE 485 

SOLVERS FOR ATMOSPHERIC CHEMISTRY PROBLEMS II: ROSENBROCK SOLVERS Atmos. Environ., 31, 3459-

3472, 1997a. 

Sandu, A., Verwer, J. G., Loon, M. V., Carmichael, G. R., Potra, F. A., Dabdub, D., and Seinfeld, J. H.: Benchmarking stiff 

ode solvers for atmospheric chemistry problems-I. implicit vs explicit, Atmos. Environ., 31, 3151-3166, 1997b. 

Sommariva, R., Cox, S., Martin, C., Borońska, K., Young, J., Jimack, P. K., Pilling, M. J., Matthaios, V. N., Nelson, B. S., 490 

Newland, M. J., Panagi, M., Bloss, W. J., Monks, P. S., and Rickard, A. R.: AtChem (version 1), an open-source box model 

for the Master Chemical Mechanism, Geoscientific Model Development, 13, 169-183, 10.5194/gmd-13-169-2020, 2020. 

Verwer, J. G., Blom, J. G., Loon, M. V., and Spee, E. J.: A comparison of stiff ODE solvers for atmospheric chemistry problems, 

Atmos. Environ, 30, 49-58, 1996. 

Wang, W., Xiao, Y., Han, S., Zhang, Y., Gong, D., Wang, H., and Wang, B.: A vehicle-mounted dual-smog chamber: 495 

Characterization and its preliminary application to evolutionary simulation of photochemical processes in a quasi-realistic 

atmosphere, Journal of Environmental Sciences, 132, 98-108, 10.1016/j.jes.2022.07.034, 2023. 

Wang, Y., Guo, H., Lyu, X., Zhang, L., Zeren, Y., Zou, S., and Ling, Z.: Photochemical evolution of continental air masses 

and their influence on ozone formation over the South China Sea, Sci Total Environ, 673, 424-434, 

10.1016/j.scitotenv.2019.04.075, 2019. 500 

Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H., and Zeren, Y.: Surface O(3) photochemistry over the South China 

Sea: Application of a near-explicit chemical mechanism box model, Environ Pollut, 234, 155-166, 

10.1016/j.envpol.2017.11.001, 2018. 

Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P. K. K., Simpson, I. J., Meinardi, S., and Blake, D. R.: 

Long-term O3–precursor relationships in Hong Kong: field observation and model simulation, Atmospheric Chemistry and 505 

Physics, 17, 10919-10935, 10.5194/acp-17-10919-2017, 2017. 

Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) 

v3.1, Geoscientific Model Development, 9, 3309-3319, 10.5194/gmd-9-3309-2016, 2016. 

Yang, Y. D., Shao, M., Kessel, S., Li, Y., Lu, K. D., Lu, S. H., Williams, J., Zhang, Y. H., Zeng, L. M., Noelscher, A. C., Wu, 

Y. S., Wang, X. M., and Zheng, J. Y.: How the OH reactivity affects the ozone production efficiency: case studies in Beijing 510 

and Heshan, China, Atmospheric Chemistry and Physics, 17, 7127-7142, 10.5194/acp-17-7127-2017, 2017. 

Yarwood, G.: Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6), 2010. 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.



26 

 

Ying, Q. and Li, J.: Implementation and initial application of the near-explicit Master Chemical Mechanism in the 3D 

Community Multiscale Air Quality (CMAQ) model, Atmospheric Environment, 45, 3244-3256, 

10.1016/j.atmosenv.2011.03.043, 2011. 515 

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmospheric 

Chemistry and Physics, 3, 2067-2082, DOI 10.5194/acp-3-2067-2003, 2003. 

 

https://doi.org/10.5194/gmd-2023-90
Preprint. Discussion started: 5 July 2023
c© Author(s) 2023. CC BY 4.0 License.


